Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Antibiotics (Basel) ; 13(4)2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38667008

RESUMEN

Antimicrobial-resistant bacteria (ARB) from the intestinal contents of wild fish may have a relevant ecological significance and could be used as indicators of antimicrobial-resistance dissemination in natural bacterial populations in water bodies impacted by urban contamination. Thus, the occurrence of ARB in the intestinal contents of pelagic and demersal wild fishes captured in anthropogenic-impacted Coquimbo Bay in Chile was studied. Culturable counts of total and antimicrobial-resistant bacteria were determined by a spread plate method using Trypticase soy agar and R2A media, both alone and supplemented with the antimicrobials amoxicillin, streptomycin, florfenicol, oxytetracycline and ciprofloxacin, respectively. Heterotrophic plate counts of pelagic and demersal fishes ranged from 1.72 × 106 CFU g-1 to 3.62 × 109 CFU g-1, showing variable proportions of antimicrobial resistance. Representative antimicrobial-resistant isolates were identified by 16S rRNA gene sequencing, and isolates (74) from pelagic fishes mainly belonged to Pseudomonas (50.0%) and Shewanella (17.6%) genera, whereas isolates (68) from demersal fishes mainly belonged to Vibrio (33.8%) and Pseudomonas (26.5%) genera. Antimicrobial-resistant isolates were tested for susceptibility to 12 antimicrobials by an agar disk diffusion method, showing highest resistance to streptomycin (85.2%) and amoxicillin (64.8%), and lowest resistance to oxytetracycline (23.2%) and ciprofloxacin (0.7%). Only furazolidone and trimethoprim/sulfamethoxazole were statistically different (p < 0.05) in comparisons between isolates from pelagic and demersal wild fishes. Furthermore, an important number of these isolates carried plasmids (53.5%) and produced Extended-Spectrum-ß-lactamases (ESBL) (16.9%), whereas the detection of Metallo-ß-Lactamases and class 1-integron was rare. This study provides evidence that wild fish are important reservoirs and spreading-vehicles of ARB, carrying plasmids and producing ESBLs in Chilean marine environments.

2.
J Fish Dis ; 47(3): e13897, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38031399

RESUMEN

Flavobacterial infection associated with diseased fish is caused by multiple bacterial species within the family Flavobacteriaceae. In the present study, the Chilean isolate FP99, from the gills of a diseased, farmed rainbow trout (Oncorhynchus mykiss), was characterized using phenotypic and genomic analyses. Additionally assessed was pathogenic activity. Phylogenetic analysis based on 16S rRNA gene sequencing confirmed that isolate FP99 belonged to the genus Epilithonimonas, an average nucleotide identity value of 100% was detected with the Chilean isolate identified as Epilithonimonas sp. FP211-J200. In silico genome analysis, mechanisms for toxins production, and superantigens, adhesion, or other genes associated with virulence were not detected. However, genes encoding proteins for antibiotic resistance were found, including the chrA gene and the nucleotide sequence that encodes for multiple antibiotic resistance MarC proteins. Furthermore, the blaESP-1 gene (87.85% aminoacidic sequence identity), encoding an extended-spectrum subclass B3 metallo-ß-lactamase and conferring carbapenem-hydrolysing activity, and the tet(X) gene, which encodes a monooxygenase that catalyses the degradation of tetracycline-class antimicrobials were carried by this isolate. Phenotyping analyses also supported assignment as E. ginsengisoli. Challenge trials against healthy rainbow trout resulted in no observed pathogenic effect. Our findings identify for the first time the species E. ginsengisoli as associated with fish farming, suggesting that this isolate may be a component of the microbiota of the freshwater system. Notwithstanding, poor environmental conditions and any stressors associated with aquaculture situations or lesions caused by other pathogenic bacteria, such as F. psychrophilum, could favour the entry of E. ginsengisoli into rainbow trout.


Asunto(s)
Chryseobacterium , Enfermedades de los Peces , Infecciones por Flavobacteriaceae , Oncorhynchus mykiss , Animales , Oncorhynchus mykiss/microbiología , Chile , Flavobacterium , ARN Ribosómico 16S/genética , Filogenia , Enfermedades de los Peces/microbiología , Genómica , Infecciones por Flavobacteriaceae/microbiología
3.
Pathogens ; 12(2)2023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-36839455

RESUMEN

Two Vibrio strains (VPAP36 and VPAP40) were isolated from moribund-settled larvae of the Chilean scallop Argopecten purpuratus during vibriosis outbreaks that occurred in two commercial scallop larvae hatcheries located in the Inglesa and Tongoy bays in Northern Chile. The strains were identified as Vibrio chagasii using phenotypic characterization and whole genome sequence analysis. Both strains exhibited the phenotypic properties associated with virulence, gelatin hydrolysis and ß-hemolysis, whereas only VPAP36 produced phospholipase and only VPAP40 produced caseinase. The whole genome analysis showed that the strains harbored genes encoding for the virulence factors, the EPS type II secretion system, and Quorum Sensing (auto-inductor 1 and auto-inductor 2), whereas genes encoding a metalloproteinase and a capsular polysaccharide were detected only in the VPAP40 genome. When challenge bioassays using healthy 11-day-old scallop larvae were performed, the V. chagasii VPAP36 and VPAP40 strains exhibited significant (p < 0.05) differences in their larval lethal activity, producing, after 48 h, larval mortalities of 65.51 ± 4.40% and 28.56 ± 5.35%, respectively. Otherwise, the cell-free extracellular products of the VPAP36 and VPAP40 strains produced larval mortalities of 20.86 ± 2.40% and 18.37 ± 2.40%, respectively, after 48 h of exposure. This study reports for the first time the isolation of V. chagasii from the massive larval mortalities of the farmed scallop (Argopecten purpuratus) in Chile, and demonstrates the pathogenic activity of V. chagasii towards the Chilean scallop, the second most important species for Chilean mariculture.

4.
Antibiotics (Basel) ; 11(11)2022 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-36358142

RESUMEN

The disposal of antibiotics in the aquatic environment favors the selection of bacteria exhibiting antibiotic resistance mechanisms. Quinolones are bactericidal antimicrobials extensively used in both human and animal medicine. Some of the quinolone-resistance mechanisms are encoded by different bacterial genes, whereas others are the result of mutations in the enzymes on which those antibiotics act. The worldwide occurrence of quinolone resistance genes in aquatic environments has been widely reported, particularly in areas impacted by urban discharges. The most commonly reported quinolone resistance gene, qnr, encodes for the Qnr proteins that protect DNA gyrase and topoisomerase IV from quinolone activity. It is important to note that low-level resistance usually constitutes the first step in the development of high-level resistance, because bacteria carrying these genes have an adaptive advantage compared to the highly susceptible bacterial population in environments with low concentrations of this antimicrobial group. In addition, these genes can act additively with chromosomal mutations in the sequences of the target proteins of quinolones leading to high-level quinolone resistance. The occurrence of qnr genes in aquatic environments is most probably caused by the release of bacteria carrying these genes through anthropogenic pollution and maintained by the selective activity of antimicrobial residues discharged into these environments. This increase in the levels of quinolone resistance has consequences both in clinical settings and the wider aquatic environment, where there is an increased exposure risk to the general population, representing a significant threat to the efficacy of quinolone-based human and animal therapies. In this review the potential role of aquatic environments as reservoirs of the qnr genes, their activity in reducing the susceptibility to various quinolones, and the possible ways these genes contribute to the acquisition and spread of high-level resistance to quinolones will be discussed.

5.
Microorganisms ; 10(1)2022 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-35056554

RESUMEN

Chile has promoted the diversification of aquaculture and red cusk-eel (Genypterus chilensis) is one of the prioritized species. However, many aspects of the biology of the species are unknown or have little information available. These include intestinal microbiota, an element that may play an important role in the nutrition and defense of cultured animals for meat production. This study compares the microbiota composition of the intestinal contents of wild and aquaculture fish to explore the microbial communities present and their potential contribution to the host. DNA was extracted from the intestinal content samples and the V4 region of the 16S rRNA gene was amplified and sequenced using the Ion Torrent platform. After the examination of the sequences, strong differences were found in the composition at the level of phylum, being Firmicutes and Tenericutes the most abundant in aquaculture and wild condition, respectively. At the genus level, the Vagococcus (54%) and Mycoplasma (97%) were the most prevalent in the microbial community of aquaculture and wild condition, respectively. The evaluation of predicted metabolic pathways in these metagenomes showed that in wild condition there is an important presence of lipid metabolism belonging to the unsaturated fatty acid synthesis. In the aquaculture condition, the metabolism of terpenoids and polyketides were relevant. To our knowledge, this is the first study to characterize and compare the intestinal microbiota of red cusk-eel (Genypterus chilensis) of wild and aquaculture origin using high-throughput sequencing.

6.
Antibiotics (Basel) ; 10(9)2021 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-34572633

RESUMEN

The main objective of this study was to characterize the tet(X) genes, which encode a monooxygenase that catalyzes the degradation of tetracycline antibiotics, carried by the resistant strains FP105 and FP233-J200, using whole-genome sequencing analysis. The isolates were recovered from fin lesion and kidney samples of diseased rainbow trout Oncorhynchus mykiss, during two Flavobacteriosis outbreaks occurring in freshwater farms located in Southern Chile. The strains were identified as Epilithonimonas spp. by using biochemical tests and by genome comparison analysis using the PATRIC bioinformatics platform and exhibited a minimum inhibitory concentration (MIC) of oxytetracycline of 128 µg/mL. The tet(X) genes were located on small contigs of the FP105 and FP233-J200 genomes. The sequences obtained for the tet(X) genes and their genetic environment were compared with the genomes available in the GenBank database of strains of the Chryseobacterium clade belonging to the Flavobacterium family, isolated from fish and carrying the tet(X) gene. The Tet(X) proteins synthesized by the Chilean Epilithonimonas strains showed a high amino acid similarity (range from 84% to 100%), with the available sequences found in strains belonging to the genus Chryseobacterium and Flavobacterium isolated from fish. An identical neighborhood of tet(X) genes from both Chilean strains was observed. The genetic environment of tet(X) observed in the two strains of Epilithonimonas studied was characterized by the upstream location of a sequence encoding a hypothetical protein and a downstream located alpha/beta hydrolase-encoding gene, similar to the observed in some of the tet(X) genes carried by Chryseobacterium and Flavobacterium strains isolated from fish, but the produced proteins exhibited a low amino acid identity (25-27%) when compared to these synthesized by the Chilean strains. This study reports for the first time the carriage of the tet(X) gene by the Epilithonimonas genus and their detection in fish pathogenic bacteria isolated from farmed salmonids in Chile, thus limiting the use of therapies based on oxytetracycline, the antimicrobial most widely used in Chilean freshwater salmonid farming. This results suggest that pathogenic strains of the Chryseobacterium clade occurring in Chilean salmonid farms may serve as important reservoirs of tet(X) genes.

8.
Antonie Van Leeuwenhoek ; 114(9): 1323-1336, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34052985

RESUMEN

Several members of the Mycobacterium genus cause invasive infections in humans and animals. According to a recent phylogenetic analysis, some strains of Mycobacterium salmoniphilum (Msal), which are the main culprit in bacterial outbreaks in freshwater fish aquaculture, have been assigned to a separate branch containing Mycobacterium franklinii (Mfra), another species that causes infections in humans. However, this genus is little studied in an aquaculture context. Here, we isolated four Mycobacterium spp. strains from freshwater cultures of Atlantic and coho salmon in Chile and performed whole-genome sequencing for deep genomic characterization. In addition, we described the gross pathology and histopathology of the outbreaks. Several bioinformatic analyses were performed using the genomes of these four Mycobacterium isolates in conjunction with those of Msal strains, four Msal-like strains, and one Mfra strains, plus 17 other publicly available Mycobacterium genomes. We found that three isolates are clustered into the Msal branch, whereas one isolate clustered with the Mfra/Msal-like strains. We further evaluated the presence of virulence and antimicrobial resistance genes and observed that the four isolates were closely related to the Msal and Msal-like taxa and carried several antimicrobial resistance and virulence genes that are similar to those of other pathogenic members of the Mycobacterium clade. Altogether, our characterization Msal and Msal-like presented here shed new light on the basis of mycobacteriosis provides quantitative evidence that Mycobacterium strains are a potential risk for aquaculture asetiological agents of emerging diseases, and highlight their biological scopes in the aquaculture industry.


Asunto(s)
Enfermedades de los Peces , Mycobacterium , Oncorhynchus kisutch , Animales , Chile , Genómica , Humanos , Mycobacteriaceae , Mycobacterium/genética , Filogenia
9.
Antibiotics (Basel) ; 10(3)2021 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-33652626

RESUMEN

The main objective of this study was to characterize using whole-genome sequencing analysis, a new variant of the qnrB gene (qnrB89) carried by a fluoroquinolone-susceptible bacterium isolated from mucus of farmed Salmo salar fingerling in Chile. Citrobacter gillenii FP75 was identified by using biochemical tests and 16S ribosomal gene analysis. Nucleotide and amino acid sequences of the qnrB89 gene exhibited an identity to qnrB of 81.24% and 91.59%, respectively. The genetic environment of qnrB89 was characterized by the upstream location of a sequence encoding for a protein containing a heavy metal-binding domain and a gene encoding for a N-acetylmuramoyl-L-alanine amidase protein, whereas downstream to qnrB89 gene were detected the csp and cspG genes, encoding cold-shock proteins. The qnrB89 gene was located on a large chromosomal contig of the FP75 genome and was not associated with the 10-kb plasmid and class 1 integron harbored by the FP75 strain. This study reports for the first time the carriage of a qnrB gene by the C. gillenii species, and its detection in a bacterial strain isolated from farmed salmon in Chile.

10.
J Invertebr Pathol ; 180: 107542, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33545132

RESUMEN

Vibrio europaeus is an emergent pathogen affecting the most important bivalve species reared in Spanish and French hatcheries. Using a genomic approach, we identified V. europaeus outside Europe for the first time from massive larval mortalities of scallop (Argopecten purpuratus) in Chile and from seawater near a shellfish hatchery in the US West Coast. Results show the worldwide spreading and potential impact of V. europaeus for aquaculture; these four countries are among the 10 major producers of mollusks. Pathogenicity of V. europaeus was demonstrated for the first time towards scallop, the second most important species for Chilean mariculture.


Asunto(s)
Pectinidae/microbiología , Vibrio/aislamiento & purificación , Animales , Acuicultura , Chile , Filogenia , Estados Unidos , Vibrio/clasificación
11.
Animals (Basel) ; 10(3)2020 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-32197370

RESUMEN

The culture of red cusk eel Genypterus chilensis is currently considered a priority for Chilean aquaculture but low larval survival rates have prompted the need for the continuous use of antibacterials. The main aim of this study was to evaluate the role of live feed as a source of antibacterial-resistant bacteria in a commercial culture of G. chilensis. Samples of rotifer and Artemia cultures used as live feed were collected during the larval growth period and culturable bacterial counts were performed using a spread plate method. Rotifer and Artemia cultures exhibited high levels of resistant bacteria (8.03 × 104 to 1.79 × 107 CFU/g and 1.47 × 106 to 3.50 × 108 CFU/g, respectively). Sixty-five florfenicol-resistant isolates were identified as Vibrio (81.5%) and Pseudoalteromonas (15.4%) using 16S rRNA gene sequence analysis. A high incidence of resistance to streptomycin (93.8%), oxytetracycline (89.2%), co-trimoxazole (84.6%), and kanamycin (73.8%) was exhibited by resistant isolates. A high proportion of isolates (76.9%) carried the florfenicol-resistance encoding genes floR and fexA, as well as plasmid DNA (75.0%). The high prevalence of multiresistant bacteria in live feed increases the incidence of the resistant microbiota in reared fish larvae, thus proper monitoring and management strategies for live feed cultures appear to be a priority for preventing future therapy failures in fish larval cultures.

12.
Microorganisms ; 7(12)2019 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-31847389

RESUMEN

Despite their great importance for human therapy, quinolones are still used in Chilean salmon farming, with flumequine and oxolinic acid currently approved for use in this industry. The aim of this study was to improve our knowledge of the mechanisms conferring low susceptibility or resistance to quinolones among bacteria recovered from Chilean salmon farms. Sixty-five isolates exhibiting resistance, reduced susceptibility, or susceptibility to flumequine recovered from salmon farms were identified by their 16S rRNA genes, detecting a high predominance of species belonging to the Pseudomonas genus (52%). The minimum inhibitory concentrations (MIC) of flumequine in the absence and presence of the efflux pump inhibitor (EPI) Phe-Arg-ß-naphthylamide and resistance patterns of isolates were determined by a microdilution broth and disk diffusion assays, respectively, observing MIC values ranging from 0.25 to >64 µg/mL and a high level of multi-resistance (96%), mostly showing resistance to florfenicol and oxytetracycline. Furthermore, mechanisms conferring low susceptibility to quinolones mediated by efflux pump activity, quinolone target mutations, or horizontally acquired resistance genes (qepA, oqxA, aac(6')-lb-cr, qnr) were investigated. Among isolates exhibiting resistance to flumequine (≥16 µg/mL), the occurrence of chromosomal mutations in target protein GyrA appears to be unusual (three out of 15), contrasting with the high incidence of mutations in GyrB (14 out of 17). Bacterial isolates showing resistance or reduced susceptibility to quinolones mediated by efflux pumps appear to be highly prevalent (49 isolates, 75%), thus suggesting a major role of intrinsic resistance mediated by active efflux.

13.
Front Microbiol ; 10: 855, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31133994

RESUMEN

The VPAP30 strain was isolated as the highly predominant bacteria from an episode of massive larval mortality occurring in a commercial culture of the Chilean scallop Argopecten purpuratus. The main aims of this study were, to characterize and identify the pathogenic strain using biochemical and molecular methods, to demonstrate its pathogenic activity on scallop larvae, to characterize its pathogenic properties and to describe the chronology of the pathology. The pathogenic strain was identified as Vibrio bivalvicida based on its phenotypic properties, the multilocus sequence analysis (MLSA) of eight housekeeping genes (ftsZ, gapA, gyrB, mreB, pyrH, recA, rpoA, and topA) and different in silico genome-to-genome comparisons. When triplicate cultures of healthy 10 days old scallop larvae were challenged with 1 × 105 colony forming units (CFU) mL-1 of the VPAP30 strain, percentages of larval survival of 78.9 ± 3.3%, 34.3 ± 4.9%, and 0% were observed at 12, 2,4 and 36 h, respectively, whereas uninfected larval cultures showed survival rates of 97.4 ± 1.2% after of 48 h. Clinical symptoms exhibited by the scallop larvae infected with the VPAP30 strain include the accumulation of bacteria around the scallop larvae, velum disruption and necrosis of digestive gland. The 50% lethal dose (LD50) of VPAP30 strain at 24 and 48 h was 1.3 × 104 and 1.2 × 103 CFU mL-1, respectively. The invasive pathogenic activity of the VPAP30 strain was investigated with staining of the bacterial pathogen with 5-DTAF and analyzing bacterial invasion using epifluorescence, and a complete bacterial dissemination inside the larvae at 24 h post-infection was observed. When scallop larvae were inoculated with cell-free extracellular products (ECPs) of VPAP30, the larval survival rate was 59.5 ± 1.7%, significantly (P < 0.001) lower than the control group (97.4 ± 1.2%) whereas larvae treated with heat-treated ECPs exhibited a survival rate of 61.6 ± 1.8% after 48 h of exposure. V. bivalvicida VPAP30 exhibits high pathogenic activity on scallop larvae, mediated both by bacterial invasion and the production of toxigenic heat-stable compounds. This report constitutes the first isolation of V. bivalvicida out of Europe and extends the host range of this species, having demonstrated its pathogenic activity on the Chilean scallop larvae (A. purpuratus). These results supporting the pathogenic potential of V. bivalvicida to kill the larvae of a broad range of bivalve species reared in hatcheries located in the Atlantic and the Pacific coasts.

14.
Front Microbiol ; 10: 748, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31031727

RESUMEN

Salmon farming industry in Chile currently uses a significant quantity of antimicrobials to control bacterial pathologies. The main aims of this study were to investigate the presence of transferable sulfonamide- and trimethoprim-resistance genes, sul and dfr, and their association with integrons among bacteria associated to Chilean salmon farming. For this purpose, 91 Gram-negative strains resistant to sulfisoxazole and/or trimethoprim recovered from various sources of seven Chilean salmonid farms and mainly identified as belonging to the Pseudomonas genus (81.0%) were studied. Patterns of antimicrobial resistance of strains showed a high incidence of resistance to florfenicol (98.9%), erythromycin (95.6%), furazolidone (90.1%) and amoxicillin (98.0%), whereas strains exhibited minimum inhibitory concentrations (MIC90) values of sulfisoxazole and trimethoprim of >4,096 and >2,048 µg mL-1, respectively. Strains were studied for their carriage of these genes by polymerase chain reaction, using specific primers, and 28 strains (30.8%) were found to carry at least one type of sul gene, mainly associated to a class 1 integron (17 strains), and identified by 16S rRNA gene sequencing as mainly belonging to the Pseudomonas genus (21 strains). Of these, 22 strains carried the sul1 gene, 3 strains carried the sul2 gene, and 3 strains carried both the sul1 and sul2 genes. Among these, 19 strains also carried the class 1 integron-integrase gene intI1, whereas the dfrA1, dfrA12 and dfrA14 genes were detected, mostly not inserted in the class 1 integron. Otherwise, the sul3 and intI2 genes were not found. In addition, the capability to transfer by conjugation these resistance determinants was evaluated in 22 selected strains, and sul and dfr genes were successfully transferred by 10 assayed strains, mainly mediated by a 10 kb plasmid, with a frequency of transfer of 1.4 × 10-5 to 8.4 × 10-3 transconjugant per recipient cell, and exhibiting a co-transference of resistance to florfenicol and oxytetracycline, currently the most used in Chilean salmon industry, suggesting an antibacterial co-selection phenomenon. This is the first report of the characterization and transferability of integrons as well as sul and dfr genes among bacteria associated to Chilean salmon farms, evidencing a relevant role of this environment as a reservoir of these genes.

15.
J Ind Microbiol Biotechnol ; 46(1): 101-111, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30377866

RESUMEN

The interest in and demand for natural dyes has increased significantly in recent years; however, very few natural blue dyes are commercially available, because blue colored compounds in nature are relatively rare. In this study, a blue pigment-producing bacteria from Lake Chungará (Atacama Desert, Chile) was isolated, and its blue pigment was purified and chemically characterized. The pigment-producing strain was identified as Pseudarthrobacter sp. by 16S rRNA gene sequencing. The pigment was separated from the filtered culture medium by column chromatography/solid-phase extraction using different resins (ionic exchange, C-18, size exclusion). The strain produced up to 2.5 g L-1 of blue pigment, which was very soluble in water, partially soluble in methanol and insoluble in other organic solvents. The pigment was analyzed and characterized by analytical HPLC, UV-Vis, FT-IR, and H-NMR, and purified by semi-preparative HPLC. The pigment was non-toxic to brine shrimp (LD50 > 2.3 g L-1) and was stable at pH 6-10 at temperatures below 60 °C. HPLC analysis shows that the pigment is composed of four major blue fractions. The physicochemical properties and structural analysis demonstrate that this pigment belongs to the indochrome isomers, whose properties have yet to have been characterized. The high solubility in water, good stability in neutral and basic pH, and negligible toxicity of the blue pigment make it a good candidate suitable for several industrial and possibly some food applications.


Asunto(s)
Micrococcaceae/química , Pigmentos Biológicos/biosíntesis , Animales , Artemia , Chile , Cromatografía Líquida de Alta Presión , Color , Medios de Cultivo , Clima Desértico , Espectroscopía de Resonancia Magnética , Micrococcaceae/clasificación , Micrococcaceae/aislamiento & purificación , Pigmentos Biológicos/aislamiento & purificación , ARN Ribosómico 16S/genética , Solubilidad , Espectroscopía Infrarroja por Transformada de Fourier , Temperatura , Pruebas de Toxicidad Aguda
16.
Front Microbiol ; 9: 1284, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29967597

RESUMEN

The Chilean salmon industry has undergone a rapid development making the country the world's second largest producer of farmed salmon, but this growth has been accompanied by an intensive use of antibiotics. This overuse has become so significant that Chilean salmon aquaculture currently has one of the highest rates of antibiotic consumption per ton of harvested fish in the world. This review has focused on discussing use of antibiotics and current status of scientific knowledge regarding to incidence of antimicrobial resistance and associated genes in the Chilean salmonid farms. Over recent years there has been a consistent increase in the amount of antimicrobials used by Chilean salmonid farms, from 143.2 tons in 2010 to 382.5 tons in 2016. During 2016, Chilean companies utilized approximately 0.53 kg of antibiotics per ton of harvested salmon, 363.4 tons (95%) were used in marine farms, and 19.1 tons (5%) in freshwater farms dedicated to smolt production. Florfenicol and oxytetracycline were by far the most frequently used antibiotics during 2016 (82.5 and 16.8%, respectively), mainly being used to treat Piscirickettsia salmonis, currently considered the main bacterial threat to this industry. However, the increasing development of this industry in Chile, as well as the intensive use of antimicrobials, has not been accompanied by the necessary scientific research needed to understand the impact of the intensive use of antibiotics in this industry. Over the last two decades several studies assessing antimicrobial resistance and the resistome in the freshwater and marine environment impacted by salmon farming have been conducted, but information on the ecological and environmental consequences of antibiotic use in fish farming is still scarce. In addition, studies reporting the antimicrobial susceptibility of bacterial pathogens, mainly P. salmonis, have been developed, but a high number of these studies were aimed at setting their epidemiological cut-off values. In conclusion, further studies are urgently required, mainly focused on understanding the evolution and epidemiology of resistance genes in Chilean salmonid farming, and to investigate the feasibility of a link between these genes among bacteria from salmonid farms and human and fish pathogens.

17.
Front Microbiol ; 8: 1255, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28729865

RESUMEN

This paper presents a validated protocol, using a novel, specifically formulated medium, to perform broth microdilution antimicrobial susceptibility assays of the salmonid bacterial pathogen Piscirickettsia salmonis. The minimum inhibitory concentrations (MIC) for florfenicol and oxytetracycline against 58 P. salmonis isolates recovered from various outbreaks occurred in Chilean salmonid farms were determined using this protocol. Normalized resistance interpretation (NRI) analysis was applied to these data to calculate appropriate protocol-specific epidemiological cut-off values. These cut-off values allow the isolates to be categorized as either fully susceptible wild type (WT) members of this species, or as manifesting reduced susceptibility non-wild type (NWT). The distribution of MIC values of florfenicol was bimodal and the distribution of the normalized values for the putative WT observation had a standard deviation of 0.896 log2 µg mL-1. This analysis calculated a cut-off value of ≤0.25 µg mL-1 and categorized 33 (56%) of the isolates as manifesting reduced susceptibility to florfenicol. For the oxytetracycline MIC data the NRI analysis also treated the distribution as bimodal. The distribution of the normalized values for the putative WT observation had a standard deviation of 0.951 log2 µg mL-1. This analysis gave a cut-off value of ≤0.5 µg mL-1 and categorized five isolates (9%) as manifesting reduced susceptibility to oxytetracycline. The susceptibility testing protocol developed in this study was capable of generating MIC data from all the isolates tested. On the basis of the precision of the data it generated, and the degree of separation of values for WT and NWT it achieved, it is argued that this protocol has the performance characteristics necessary for it to be considered as a standard protocol.

18.
Front Microbiol ; 7: 1880, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27933043

RESUMEN

Flavobacterium psychrophilum is the most important bacterial pathogen for freshwater farmed salmonids in Chile. The aims of this study were to determine the susceptibility to antimicrobials used in fish farming of Chilean isolates and to calculate their epidemiological cut-off (COWT) values. A number of 125 Chilean isolates of F. psychrophilum were isolated from reared salmonids presenting clinical symptoms indicative of flavobacteriosis and their identities were confirmed by 16S rRNA polymerase chain reaction. Susceptibility to antibacterials was tested on diluted Mueller-Hinton by using an agar dilution MIC method and a disk diffusion method. The COWT values calculated by Normalized Resistance Interpretation (NRI) analysis allow isolates to be categorized either as wild-type fully susceptible (WT) or as manifesting reduced susceptibility (NWT). When MIC data was used, NRI analysis calculated a COWT of ≤0.125, ≤2, and ≤0.5 µg mL-1 for amoxicillin, florfenicol, and oxytetracycline, respectively. For the quinolones, the COWT were ≤1, ≤0.5, and ≤0.125 µg mL-1 for oxolinic acid, flumequine, and enrofloxacin, respectively. The disk diffusion data sets obtained in this work were extremely diverse and were spread over a wide range. For the quinolones there was a close agreement between the frequencies of NWT isolates calculated using MIC and disk data. For oxolinic acid, flumequine, and enrofloxacin the frequencies were 45, 39, and 38% using MIC data, and 42, 41, and 44%, when disk data were used. There was less agreement with the other antimicrobials, because NWT frequencies obtained using MIC and disk data, respectively, were 24 and 10% for amoxicillin, 8 and 2% for florfenicol, and 70 and 64% for oxytetracycline. Considering that the MIC data was more precise than the disk diffusion data, MIC determination would be the preferred method for susceptibility testing for this species and the NWT frequencies derived from the MIC data sets should be considered as the more authoritative. Despite the high frequency of isolates showing full susceptibility to florfenicol, the significant frequencies of isolates exhibiting reduced susceptibility to oxytetracycline and quinolones may result in treatment failures when these agents are used.

19.
Front Microbiol ; 7: 1473, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27703450

RESUMEN

The VPAP30 strain was isolated as the highly predominant bacteria from an episode of massive larval mortality occurring in a commercial culture of the Chilean scallop Argopecten purpuratus. The main aims of this study were, to characterize and identify the pathogenic strain using biochemical and molecular methods to demonstrate its pathogenic activity on scallop larvae, to characterize its pathogenic properties and to describe the chronology of this pathology. The pathogenic strain was identified as Vibrio tubiashii based on its phenotypic properties and the sequence analysis of its 16S rRNA and housekeeping genes (ftsZ, gapA, gyrB, mreB, pyrH, recA, rpoA and topA). When triplicate cultures of healthy 10-day-old scallop larvae were challenged with 1 × 105 colony forming units (CFU) mL-1 of the VPAP30 strain, percentages of larval survival of 78.87 ± 3.33%, 34.32 ± 4.94%, and 0% were observed at 12, 24, and 36 h, respectively; whereas uninfected larval cultures showed survival rates of 97.4 ± 1.24% after of 48 h. Clinical symptoms exhibited by the scallop larvae infected with the VPAP30 strain include the accumulation of bacteria around the scallop larvae, velum disruption and necrosis of digestive gland. The 50% lethal dose (LD50) of VPAP30 strain at 24 and 48 h was 1.3 × 104 and 1.2 × 103 CFU mL-1, respectively. The invasive pathogenic activity of the VPAP30 strain was investigated with staining of the bacterial pathogen with 5-DTAF and analyzing bacterial invasion using epifluorescence, and a complete bacterial dissemination inside the larvae at 24 h post-infection was observed. When scallop larvae were inoculated with cell-free extracellular products (ECPs) of VPAP30, the larval survival rate was 59.5 ± 1.66%, significantly (P < 0.001) lower than the control group (97.4 ± 1.20%) whereas larvae treated with heat-treated ECPs exhibited a survival rate of 61.6 ± 1.84% after 48 h of exposure. This is the first report of the isolation of V. tubiashii from the diseased larvae of the scallop A. purpuratus, occurring in a commercial culture in Chile, and it was demonstrated that the VPAP30 strain exhibits high pathogenic activity on scallop larvae, mediated both by bacterial invasion and the production of toxigenic heat-stable compounds.

20.
Genome Announc ; 3(4)2015 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-26159530

RESUMEN

We report here the 5.167-Mbp draft genome sequence of Vibrio VPAP30, isolated from an Argopecten purpuratus larval culture. Vibrio VPAP30 is the etiological agent of a vibriosis outbreak causing a complete collapse of a larval culture of the scallop A. purpuratus, which occurred in a commercial hatchery in Chile.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...